The Effects of Transcranial Direct Current Stimulation (tDCS) on Working Memory in Healthy Young Adults
Subject Areas :Nima ganji 1 , Roza Rashedi 2 , نگار کریمی 3 * , پروانه فرهاد بیگی 4 , Ali Akbar Soleimani 5 , Azam Noferesti 6 , Mohammad Hossein Abdollahi 7 , Fatemeh Moin Al-Ghorabaei 8
1 -
2 -
3 -
4 -
5 -
6 -
7 -
8 -
Keywords:
Abstract :
Introduction: Working memory is one of the fundamental cognitive ability that helps us perform complex mental processes but has limited capacity. Scientists are looking for ways to increase working memory capacity. Numerous studies have shown the effect of direct transcranial stimulation (tDCS) on various aspects of performance. The aim of this study was to evaluate the effectiveness of transcranial direct current stimulation on working memory function in healthy individuals. Methods: In this study, the effect of three-session of anodal tDCS stimulation period with an intensity of 2 mA in the lateral posterior anterior cortex on the working memory function of healthy individuals in two experimental and control random groups was investigated using N-Beck test. Results: The results showed that the subjects in the experimental group after three sessions of direct transcranial stimulation, presented a higher number of correct answers (p= 0.00) in less response time (p=0.00) in n-back task compare to their performance before the tDCS sessions. Subjects didn’t show significant difference through the same analysis which was performed in the control group. Conclusion: According to the n-back task results, before and after tDCS 3-session intervention, anodal transcranial stimulation on dorsal-lateral prefrontal cortex (DLPFC) improves the performance of healthy subjects in the experimental group and tDCS neuromodulation could be an alternative way to improve cognition abilities like working memory among of healthy people.
1. Au J, Katz B, Buschkuehl M, Bunarjo K, Senger T, Zabel C. et al. Enhancing working memory training with transcranial direct current stimulation. J. Cognitive. Neuroscience. 2016; 28, 1419–1432. doi: 10.1162/jocn_a_0097
2. Baddeley A. Working memory. Current Biology. 2010; 20, 136–140. doi: 10.1016/j.cub.2009; 12.014
3. Osaka M, Osaka N, Kondo H, Morishita M, Fukuyama H, Aso T. et al. The neural basis of individual differences in working memory capacity: an fMRI study. Neuroimage. 2003; 18, 789–797. doi: 10.1016/S1053-8119(02)00032-0
4. Owen AM, McMillan KM, Laird AR, Bullmore E. N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Humman Brain Mapping. 2005; 25, 46–59. doi: 10.1002/hbm. 20131
5. Chein JM, Moore AB, Conway ARA. NeuroImage domaingeneral mechanisms of complex working memory span. Neuroimage. 2011; 54,550–559. doi: 10.1016/j.neuroimage.2010.07.067
6. Kim C, Kroger JK, Calhoun VD, Clark VP. The role of the frontopolar cortex in manipulation of integrated information in working memory. Neuroscience Letters. 2015; 595, 25–29. doi: 10.1016/j.neulet.2015.03.044
7. Jimura K, Chushak MS, Westbrook A, Braver TS. Intertemporal decision-making involves prefrontal control mechanisms associated with working memory. Cerebral Cortex. 2017; doi: 10.1093/cercor/bhx015
8. Moore AB, Li Z, Tyner CE, Hu X, Crosson B. Bilateral basal ganglia activity in verbal working memory. Brain and Language. 2013; 125, 316–323.doi: 10.1016/j.bandl.2012.05.003
9. Vartanian O, Jobidon ME, Bouak F, Nakashima A, Smith I, Lam Q. et al. Working memory training is associated with lower prefrontal cortex activation in a divergent thinking task. Neuroscience. 2013; 236, 186–194. doi:10.1016/j.neuroscience. 201212.060
10. Rodriguez Merzagora AC, Izzetoglu M, Onaral B, Schultheis MT. Verbal working memory impairments following traumatic brain injury: an fNIRS investigation. Brain Imaging and Behavior. 2014; 8, 446–459. doi: 10.1007/s11682-013-9258-8
11. Murty VP, Sambataro F, Radulescu E, Altamura M, Iudicello J, Zoltick B. et al. Selective updating of working memory content modulates mesocortico-striatal activity. Neuroimage, 2011; 57, 1264–1272. doi: 10.1016/j.neuroimage.2011.05.006
12. Cain K, Oakhill J, Bryant P. Children's reading comprehension ability: Concurrent prediction by working memory, verbal ability, and component skills. Journal of Educational Psychology. 2004; 96, 31 42. http://psycnet.apa.org/doi/10.1037/0022-0663.96.1.31.
13. Cowan N. The many faces of working memory and short-term storage. Psychonomic Bulletin & Review, 2017; 24, 1158–1170. https://doi.org/10.3758/s13423-016-1191-6
14. Cowan N. The magical number 4 in short-term memory: A reconsideration of mental storage capacity, Brain Imaging and Behavior. 2001; 24, 87-185
15. Miller GA. The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 1956; 63, 81-97
16. Andrews SC, Hoy KE, Enticott PG, Daskalakis ZJ, Fitzgerald PB. Improving working memory: the effect of combining cognitive activity and anodal transcranial direct current stimulation to the left dorsolateral prefrontal cortex. Brain Stimulation. 2001; 4, 84–89. doi: 10.1016/j.brs.2010.06.004
17. Coffman BA, Clark VP, Parasuraman R. Battery powered thought: enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. Neuroimage. 2014; 85, 895–908.doi: 10.1016/j.neuroimage.2013.07.083
18. Santarnecchi E, Brem AK, Levenbaum E, Thompson T, Kadosh RC, Pascual-Leone A. Enhancing cognition using transcranial electrical stimulation. Current Opinion in Behavioral Sciences. 2015; 4, 171–178. doi: 10.1016/j.cobeha.2015.06.003
19. Dockery CA, Liebetanz D, Birbaumer N, Malinowska M, Wesierska MJ. Cumulative benefits of frontal transcranial direct current stimulation on visuospatial working memory training and skill learning in rats. Neurobiology of Learning and Memory. 2011; 96, 452–460. doi: 10.1016/j.nlm.2011.06.018
20. Brunoni AR, Vanderhasselt MA. Working memory improvement with non-invasive brain stimulation of the dorsolateral prefrontal cortex: a systematic review and meta-analysis. Brain and Cognition. 2014; 86, 1–9. doi: 10.1016/j.bandc.2014.01.008
21. Park SH, Seo JH, Kim YH, Ko MH. Long-term effects of transcranial direct current stimulation combined with computerassisted cognitive training in healthy older adults. Neuroreport. 2014; 25, 122–126. doi: 10.1097/wnr.0000000000000080
22. Richmond LL, Wolk D, Chein J, Olson IR. Transcranial direct current stimulation enhances verbal working memory training performance over time and near transfer outcomes. Journal of Cognitive Neuroscience. 2014; 26, 2443–2454.doi: 10.1162/jocn_a_00657
23. Nelson JT, McKinley RA, Golob EJ, Warm JS, Parasuraman R. Enhancing vigilance in operators with prefrontal cortex transcranial direct current stimulation (tDCS). Neuroimage. 2014; 85, 909–917. doi: 10.1016/j.neuroimage.2012.11.061
24. Ciechanski P, Kirton A. Transcranial direct-current stimulation can enhance motor learning in children. Cerebral Cortex. 2017; 27, 2758–2767. doi: 10.1093/cercor/bhw114
25. Filmer HL, Mattingley JB, Dux PE. Improved multitasking following prefrontal tDCS. Cortex. 2013; 49, 2845–2852. doi: 10.1016/j.cortex.2013.08.015
26. Hsu WY, Zanto TP, Anguera JA, Lin YY, Gazzaley A. Delayed enhancement of multitasking performance: effects of anodal transcranial direct current stimulation on the prefrontal cortex. Cortex. 2015; 69, 175–185. doi: 10.1016/j.cortex.2015.05.014
27. Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E. et al. Anodal transcranial direct current stimulation of prefrontal cortexenhances working memory. Experimental Brain Research. 2005; 166, 23–30. doi: 10.1007/s00221-005-2334-6
28. Moreno ML, Vanderhasselt MA, Carvalho AF, Moffa AH, Lotufo PA, Benseñor IM. et al. Effects of acute transcranial direct current stimulation in hot and cold working memory tasks in healthy and depressed subjects. Neuroscience Letters. 2015; 591, 126–131. doi: 10.1016/j.neulet.2015.02.036
29. Gözenman F, Berryhill ME. Working memory capacity differentially influences responses to tDCS and HD-tDCS in a retro-cue task. Neuroscience Letters. 2016; 629, 105–109. doi: 10.1016/j.neulet.2016.06.056
30. Hill AT, Fitzgerald PB, Hoy KE. Effects of anodal transcranial direct current stimulation on working memory: a systematic review and meta-analysis of findings from healthy and neuropsychiatric populations. Brain Stimulation. 2016; 9, 197–208. doi: 10.1016/j.brs.2015.10.006
31. Stephens JA, Berryhill ME. Older adults improve on everyday tasks after working memory training and neurostimulation. Brain Stimulation. 2016; 9, 553–559. doi: 10.1016/j.brs.2016.04.001
32. Talsma LJ, Kroese HA, Slagter HA. Boosting cognition: effects of multiple-session transcranial direct current stimulation on working memory. Journal of Cognitive Neuroscience. 2017; 29, 755–768. doi: 10.1162/jocn_a_01077
33. McKendrick R, Parasuraman R, Ayaz H. Wearable functional near infrared spectroscopy (fNIRS) and transcranial direct current stimulation (tDCS): expanding vistas for neurocognitive augmentation. Frontiers in Systems Neuroscience. 2015; 9(27). doi: 10.3389/fnsys.2015.00027
34. Bergmann TO, Karabanov A, Hartwigsen G, Thielscher A, Siebner HR. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: current approaches and future perspectives. Neuroimage. 2016; 140, 4–19. doi: 10.1016/j.neuroimage.2016.02.012
35. Wörsching J, Padberg F, Ertl-Wagner B, Kumpf U, Kirsch B, Keeser D. et al. Imaging transcranial direct current stimulation (tDCS) of the prefrontal cortex—correlation or causality in stimulation-mediated effects? Neuroscience & Biobehavioral Reviews. 2016; 69, 333–356. doi: 10.1016/j.neubiorev.2016.08.001
36. Jones KT, Peterson DJ, Blacker KJ, Berryhill ME. Frontoparietal neurostimulation modulates working memory training benefits and oscillatory synchronization. Brain Resarch. 2017; 1667, 28–40. doi: 10.1016/j.brainres.2017.05.005
37. Bogaard AR, Lajoie G, Boyd H, Morse A, Zanos S, Fetz E.Cortical network mechanisms of anodal and cathodal transcranial direct current stimulation in awake primates. 2019; bioRxiv:516260 [Preprint]. doi: 10.1101/516260
38. Horvath JC, Forte JD, Carter O. Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimulation. 2015; 8, 535–550. doi: 10.1016/j.brs.2015.01.400
39. Mancuso LE, Ilieva IP, Hamilton RH, Farah MJ. Does transcranial direct current stimulation improve healthy working memory?a meta-analytic review. Journal of Cognitive Neuroscience. 2016; 28, 1063–1089. doi: 10.1162/jocn_a_00956
40. Katz B, Au J, Buschkuehl M, Abagis T, Zabel C, Jaeggi SM. et al. Individual differences and long-term consequences of tDCS-augmented cognitive training. Journal of Cognitive Neuroscience. 2017; 29, 1498–1508. doi: 10.1162/jocn_a_01115
41. Stephens JA, Jones KT, Berryhill ME. Task demands, tDCS intensity, and the COMT val 158 met polymorphism impact tDCS-linked working memory training gains. Scientific Report. 2017; 7, 13463. doi: 10.1038/s41598-017-14030-7
42. Trumbo M. C, Matzen L. E, Coffman B A, Hunter M. A, Jones A. P, Robinson C. S., et al. (2016). Enhanced working memory performance via transcranial direct current stimulation: the possibility of near and far transfer. Neuropsychologia 93, 85–96. 10.1016/j.neuropsychologia.2016.10.011
43. Mancuso LE, Ilieva IP, Hamilton RH, Farah MJ. Does transcranial direct current stimulation improve healthy working memory? a meta-analytic review. Journal of Cognitive. Neuroscience. 2016; 28, 1063–1089. doi: 10.1162/jocn_a_00956
44. Conway AR, Miura TK, Colflesh GJ. Working memory, attention control, and the N-back task: a question of construct validity. Journal of Experimental Psychology: Learning, Memory, and Cognition. 2007; 33(3), 615-22.
45. Najarzadegan M, Nejati M, Amiri N. Working memory is an effective indicator of risk taking in children with attention deficit / hyperactivity disorder. Journal of Neuroscience Psychology, 2015; 1(1), 52-68. (Persian)
46. Zaehle T, Sandmann P, Thorne JD. Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysiological evidence. BMC Neuroscince, 2011; 12, 2.
47. Teo F, Hoy K, Daskalakis Z, Fitzgerald P. Investigating the role of current strength in TDCS modulation of working memory performance in healthy controls. Frontiers in Psychiatry. 2011; 2, 1-6.
48. Brunoni A, Ferrucci R, Bortolomasi M, Vergari M, Tadini L, Boggio P. Transcranial direct current stimulation (TDCS) in unipolar vs. bipolar depressive disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry,2011; 65(1):63.101.
49. Arkan, A, Yaryari F, The Effect of Transcranial Direct Current Stimulation (TDCS) on the Working Memory in Healthy People. Cognitive Psychology. 2004; 2(2), 10-17 (Persian)
50. Filho E M D S, Albuquerque J A D, Mescouto K. A, Freitas R P D A. Effect of transcranial direct current stimulation on the working memory of post-stroke people an integrative review. Manual Therapy, Posturology & rehabilitation journal. 2017; 15, 496- 502.
51. Stagg C J, Best J. G, Stephenson M C, O'Shea J, Wylezinska M, Kincses Z T, et al. Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. Journal of Neuroscience.2009; 29, 5202–5206. 10.1523/JNEUROSCI.4432-08.2009
52. Wilke S, List J, Mekle R, Lindenberg R, Bukowski M, Ott S, et al. No effect of anodal transcranial direct current stimulation on gamma-aminobutyric acid levels in patients with recurrent mild traumatic brain injury. Journal of Neurotrauma. [Epub ahead of print]. 2016; 10.1089/neu.2016.4399
53. Robbins T W, Murphy E R. Behavioural pharmacology, 40years of progress, with a focus on glutamate receptors and cognition, Trends in Pharmacological Sciences. 2006; 27, 141–148
54. Cooke S.F, & Bliss, T.V.P. Plasticity in the human central nervous system. Brain. 2006; 129, 1659– 1673.
55. Ranieri F, Podda M V, Riccardi E Frisullo, G Dileone, M Profice, P Pilato, F D Lazzaro, Grassi C. Modulation of LTP at rat hippocampal CA3-CA1 synapses by direct current stimulation. Neurophysiology. 2012; 107, 7, 1868– 1880
56. Moreno ML, Vanderhasselt MA, Carvalho AF, Moffa AH, Lotufo PA, Benseñor IM. et al. Effects of acute transcranial direct current stimulation in hot and cold working memory tasks in healthy and depressed subjects. Neuroscience Letters. 2015; 591, 126–131. doi:10.1016/j.neulet.2015.02.036.
57. Gözenman F, Berryhill ME. Working memory capacity differentially influences responses to tDCS and HD-tDCS in a retro-cue task. Neuroscience Letters. 2016; 629, 105–109. doi: 10.1016/j.neulet.2016.06.056
58. Sood M, Besson P, Muthalib M, Jindal U, Perrey S, Dutta A. et al. NIRS-EEG joint imaging during transcranial direct current stimulation: online parameter estimation with an autoregressive model. Journal of Neuroscience Methods. 2016; 274, 71–80. doi: 10.1016/j.jneumeth.2016.09.008.
59. Callan DE, Falcone B, Wada A, Parasuraman R. Simultaneous tDCS-fMRI identifies resting state networks correlated with visual search enhancement. Frontiers in Human Neuroscience. 2016; 10, 72. doi: 10.3389/fnhum.2016.00072
60. Fertonani A, Ferrari C, Miniussi C. What do you feel if I apply transcranial electric stimulation? Safety, sensations and secondary induced effects. Clinical. Neurophysiology. 2015; 126, 2181–2188. doi: 10.1016/j.clinph.2015.03.015
61. Bikson M, Grossman P, Thomas C, Zannou AL, Jiang J, Adnan T. et al. Safety of transcranial direct current stimulation: evidence-based update 2016. Brain Stimulation. 2016; 9, 641–661. doi: 10.1016/j.brs.2016.06.004
62. Matsumoto H, Ugawa Y. Adverse events of tDCS and tACS: a review. Clinical Neurophysiology Practice. 2017; 2, 19–25. doi: 10.1016/j.cnp.2016;12.003
63. Nikolin S, Huggins C, Martin D, Alonzo A, Loo CK. Safety of repeated sessions of transcranial direct current stimulation: a systematic review. Brain Stimulation. 2018; 11, 278–288. doi: 10.1016/j.brs.2017;10.020